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Abstract. The boreal spring biomass burning (BB) in the northern peninsular Southeast Asia (nPSEA) are lifted into the 

subtropical jet stream, get transported and deposited across nPSEA, South China, Taiwan, and even the western North 

Pacific Ocean. This paper as part of the 7-Southeast Asian Studies (7-SEAS) project effort attempts to improve the 15 

prediction capability of the chemical transport model (WRF-CMAQ) over a vast region including the mountainous near-

source burning sites at nPSEA to its downwind region. Several sensitivity analyses of plume rise are compared in the paper 

and it discovers that the initial vertical allocation profile of BB plume and plume rise module (PLMRIM) are the main 

reasons causing the inaccuracies of the WRF-CMAQ simulations. The smoldering emission from the Western Regional Air 

Partnership (WRAP) empirical algorithm included has improve the accuracies of PM10, O3 and CO at the source. The best 20 

performance at the downwind sites is achieved with the inline PLMRIM that accounts for the atmospheric stratification at 

the mountainous source region with the high-resolution FINN burning emission dataset. The calibrated model greatly 

improves not only the BB emission prediction over near-source and receptor ground-based measurement sites but also the 

aerosol vertical distribution (MPLNET, CALIPSO) and column aerosol optical depth (MODIS AOD) of the BB aerosol 

along the transport route. Three distinct transport mechanisms from nPSEA to the western North Pacific are then identified 25 

while a particular mechanism which involves Asian cold surge is able to mix the BB smoke plumes into the boundary layer 

and affects the ground surface over the western Taiwan.   

 

1 Introduction  

Large amounts of gaseous and aerosol pollutants released from biomass burnt affect regional air quality, radiative forcing, 30 

public health, and economic burden, especially in Southeast Asia (Chen et al., 2017; Lee et al., 2017; Pani et al., 2018, 
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2020). The prolonged heat during the dry season (December to May) in peninsular Southeast Asia (PSEA) has led to the 

deterioration of biomass burning (BB) in northern PSEA (nPSEA) (Kim Oanh and Leelasakultum, 2011). The outflow of the 

BB smoke plumes from nPSEA usually occurs during the spring season (late-February until mid-April) when the high-

pressure system has retreated northwards back into the Asian Continent. The mountainous structure over the northcentral 35 

PSEA has lifted the BB plume into the subtropical Pacific High (700 to 800 hPa, ~1-3 km) under prevailing south wind 

(Dong and Fu, 2015b; Huang et al., 2020). The plume is then transported eastward to the West Pacific and frequently 

detected at the Lulin Atmospheric Background Station (LABS)  in central Taiwan  (Fu et al., 2012; Lee et al., 2011; Lin et 

al., 2017, 2014, 2013; Ou-Yang et al., 2014; Wang et al., 2013b). Moreover, there were several instances when the high-

pressure system entered Taiwan and brought the upper-layer BB plumes down to populous southwestern Taiwan and altered 40 

the atmospheric chemistry and composition (Dong et al., 2018; Huang et al., 2016; Yen et al., 2013).  

 

Space-borne remote-sensing data from satellites and the high spatiotemporal data generated from the chemical weather 

prediction (CWP) model are often used for studying long-range transport of BB smoke across the region (e.g. Huang et al., 

2020; Tsay et al., 2013). Previous studies have found that the numerical model has prone to overpredict the BB emissions 45 

including CO, PM2.5, and PM10 up to three times of the measured amount at the major burning source in northern Thailand 

(Huang et al., 2013; Pimonsree et al., 2018). The exceedance of predicted emission at the near-source burning leads to the 

incorrect modelled signal at the downwind site (Fu et al., 2012). The modelled columnar aerosol optical depth (AOD) are 

found comparable with aerosol products of Aerosol Robotic Network (AERONET) and Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor as well as columnar CO and NO2 at the burning source over nPSEA region but great 50 

discrepancies are found for the spatial distribution of downwind plumes (Dong and Fu, 2015b; Fu et al., 2012). In those 

models, the vertical distribution percentage of BB was set to be constant throughout the case. However, there are many 

possible factors that govern the actual plume rise condition, including the fire size, vegetation cover, buoyancy heat flux, 

wind drag, boundary layer condition, etc. (Freitas et al., 2010; Kukkonen et al., 2014; Paugam et al., 2016; Val Martin et al., 

2012). Furthermore, the accuracy of the model depends greatly on the plume rise condition.  55 

 

As part of the local effort of interdisciplinary 7-Southeast Asian Studies (7-SEAS) project (Lin et al., 2013; Reid et al., 

2013), this paper attempts to improve the modelling performance of the long-range transport of BB from the nPSEA region 

to the downwind region using the WRF-CMAQ model. The paper attempts to improve the ability of the Community 

Multiscale Air Quality (CMAQ) model and its plume rise module (PLMRIM) to predict the complexity of BB amount from 60 

its burning source in nPSEA to its downwind receptor LABS. With the availability of on-site and satellite LiDAR (Light 

Detection and Ranging) measurement, the vertical plume rise profile can be better understood to ensure that BB plumes are 

distributed according to the actual conditions (Walter et al., 2016; Wang et al., 2013b). In this work, several factors including 

the injection height, initial vertical distribution, and smoldering fraction are considered into the model. Knowing that the 

atmospheric circulation over nPSEA is also affected by terrain, the work now intends to incorporate the interaction of the 65 
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atmospheric stratification to the PLMRIM. This research approaches mainly from the perspective of the vertical distribution 

profile of modelled BB emission with the assistance of top-down and bottom-up vertical LiDAR profilers. The better-

performing setting will be applied to test its applicability and to dissect the sources of high pollution at LABS and in western 

Taiwan.  

 70 

The model experimental design (Section 2.1), model emission input (Section 2.2), and case study setup (Section 2.3) are 

explained in detail. The performance of the PLMRIM is then verified with ground-based measurement station in Section 3.1 

and vertical aerosol products from LiDAR sensors (MPLNET, CALIPSO) and MODIS columnar AOD (Section 3.2), where 

the reliability and accuracy of inline PLMRIM are discussed (Section 3.3). The resulting output is subsequently studied in 

Section 4 to answer the transport mechanism to the ground-based observation sites in western Taiwan. From which 75 

conclusion to the findings are made in Section 5.  

2 Methodology 

The study focuses on the spring BB events in March 2013. With moderate burning occurring in nPSEA, this ENSO-neutral 

year is chosen because the LABS mainly received the BB plumes with minimal influence from the Asian dust storm to 

Taiwan (NOAA-ESRL, 2020; TAQM, updated daily; Kong et al., 2021 in review). The 7-SEAS spring campaigns carried 80 

out during the BB season supplies abundance of data to the near source burning and receptor.  

2.1 Model Physics and Experimental Design 

This work employs Weather Research and Forecast (WRF-ARW v3.9.1) (Wang et al., 2017) model to hindcast the weather 

field and predict the corresponding air chemistry field with the chemical transport model CMAQ v5.2.1 (Byun and Schere, 

2006). The model domain is dynamically nested down from the majority of Asia (d01 resolution: 45 km) to cover the 85 

transport route from nPSEA to Taiwan (d02: 15km), Taiwan only (d03: 5km) and nPSEA only (d04: 5km) as shown in Fig. 

1. The weather input for the initial and lateral boundary condition is the 6-hourly 1° x 1° National Centers for Environmental 

Prediction (NCEP) Final Analyses (FNL) dataset (NCEP-ds083.2, Updated daily). As an extension of the latter, data 

assimilation is applied for both grid- and observation-nudging. The weather data for observation nudging are obtained from 

NCEP ADP Global Surface (NCEP-ds461.0, Updated daily) and Upper Air Observational Weather Data (NCEP-ds351.0, 90 

updated daily) with additional local sites operated by Taiwan Central Weather Bureau (CWB) and Thailand Pollution 

Control Department (PCD). The radii of influence (RIN) for both d03 and d04 are updated to 100 km based on the average 

distance between the observation stations (d03: 125 km, d04: 153 km) and the minimum distance between 2 stations (d03: 64 

km, d04: 36 km). Wind speed and wind direction are substantially improved by observation nudging. A detailed discussion 

about meteorology performance is given in Appendix A. Other WRF-CMAQ settings and configurations are listed in Table 95 

1.  
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The Micro-Pulse Lidar Network (MPLNET) is a federated network managed by NASA to measure the aerosol vertical 

structure (Welton et al., 2000). In line with the 2014 7-SEAS spring campaign conducted in nPSEA, the gridded extinction, 

diagnosed from the planetary boundary layer height and vertical aerosol extinction coefficient data collected is used to verify 

the performance of the model output (Wang et al., 2015a). The top-down lidar system, the Cloud-Aerosol Lidar with 100 

Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 

satellite is used to study the transport pattern over larger spatial coverage to complement the single point cross-extinction 

profile provided by the MPLNET system. The diagnosed vertical feature mask (VFM) product is used to distinguish the 

aerosol types with consideration of observed backscatter strength and depolarization (Winker et al., 2011).  

 105 

Table 1: WRF and CMAQ model settings 

 
Settings 

Weather model WRF version 3.9.1 

Period 1– 31 Mar 2013 (after spin up) 

Boundary condition  NCEP FNL lateral boundary condition 

Vertical  41 layers up to 50 hPa with 10 layers in the bottom 2km 

Weather nudging Grid and observation nudging 

Planetary boundary  Asymmetric Convective Mechanism 2 

Surface and land surface model Pleim-Xiu 

Longwave radiation RRTM scheme 

Shortwave radiation Goddard 

Microphysics scheme Goddard 

Cumulus scheme Kain-Fritsch (1) for d01, d02 only 

Chemistry transport model CMAQ version 5.2.1 

Gas-phase chemistry and aerosol 

mechanism  

CB05e51 + AE6 (with aqueous chemistry) 

Emission inventory d01, d02: MICS-ASIA 2010, biogenic emission from MEGANv2.1 

d03: Taiwan local emission inventory (TEDS v8.1) 
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Figure 1: (a) Domain setup of model (domain 1-4) with terrain height information; (b) 3rd domain covering Taiwan (d03) with 

information of terrain height (contour fill), AA’ cross section (dotted red line), locations of Taiwan EPA air quality and CWB 

weather stations (black dots) and LABS receptor site (big red dot); (c) 4th domain covering part of nPSEA (d04) with terrain 110 
height (contour fill), BB’ cross section (dotted red line), location of Thailand PCD ground air quality stations (black dots) and 

DAK source site (big red dot).  

2.2 Emission Data 

2.2.1 Anthropogenic and biogenic emission inventories 

The anthropogenic emissions are re-gridded for the 1st, 2nd and 4th domain (d01, d02, d04 in Fig. 1) from MIX dataset 115 

available at 0.25° x 0.25° for the year 2010 (Li et al., 2017; Zheng et al., 2018). Model of Emissions of Gases and Aerosols 

from Nature (MEGAN v2.10) produces the biogenic emission input (Guenther et al., 2012) using the updated 8-day averaged 

leaf area index (LAI) (Yuan et al., 2011) and present-day plant functional types (PFT) from the Community Land Model 

version 4.0 (CLM4.0) (Oleson et al., 2010). The 3rd domain (d03) covering Taiwan uses the 2010 anthropogenic and 

biogenic emissions from the locally developed Taiwan national emission database (TEDSv8.1) (TEPA, 2017). Except the 120 

high quality of the East Asia national emission inventories (China, Taiwan, Japan, and Korea), large uncertainties of 

Southeast Asia emission due to the scarce availability of region-specific emission factor are pointed out by the inventory 

developers (Kurokawa et al., 2013; Li et al., 2018; Ohara et al., 2007) and local modelling efforts (Dong and Fu, 2015a; Ooi 

et al., 2019). Such inaccuracies are likely to affect the performance of further modeling work in the area. Therefore, energy 

statistics based on global anthropogenic emissions dataset, Evaluating the Climate and Air Quality Impacts of Short-Lived 125 

(b) d03(a) Domain settings

(c) d04
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Pollutants (ECLIPSE) developed by International Energy Agency (IEA) (Klimont et al., 2017) is used in place of the MIX 

dataset for peninsular SEA (PSEA). The accuracy deviation between these two datasets in nPSEA is determined through the 

WRF-CMAQ model performance in Section 4. The detailed comparison of ECLIPSE and MIX dataset in 2010 is discussed 

in Appendix B.  

2.2.2 Biomass burning emission inventory 130 

The study region is composed of small fire while small area burnt but has a rather substantial amount of fuel load and BB 

emissions due to the high woody compositions of the tropical and temperate forest covers. The global data set, Fire 

INventory from NCAR (FINN v1.5) has been applied in several previous works of literature in the region (Lin et al., 2014; 

Pimonsree and Vongruang, 2018) and is used as the input to the BB emission inventory into the model. A particular 

comparison work done for 2014 biomass burning episodes has shown FINN when used with NCEP FNL boundary condition 135 

gives the greatest accuracy for PM10 at the source region compared to the GFEDv4.1 fire emission dataset (Takami et al., 

2020). Seeing that the temporal speciation is handled in this research work, the main difference between fire emission 

inventories is the total amount of emission produced (Liu et al., 2020), hence this paper will settle with regionally more 

robustly tested FINN dataset for the subsequent studies. FINN is a 1 km x 1 km resolution bottom-up daily emission dataset 

produced from the MODIS product of active fire, land-cover type, and vegetation continuous field (Wiedinmyer et al., 140 

2011). Each active fire is assumed for a 1 km2 burnt area and the emission factor is geographically and land-cover 

dependent. The BB emission is processed with the fire_emis preprocessor to allocate to each grid and specify to the hourly-

scale for input into the WRF-CMAQ model. 

2.3 Case study setup 

The plume rise module (PLMRIM) derives the initial plume top and bottom, plume rise and its dispersion according to the 145 

atmospheric stability and its residual buoyancy flux (Kukkonen et al., 2014). Among a wide range of PLMRIM approaches, 

the simplest plume rise allocation method is the direct allocation of the initial plume top and bottom through prescribed 

height for all fires. This is the conventional method adopted in the case study region (Chuang et al., 2016b; Pimonsree et al., 

2018). They can be determined on fixed height (Wang et al., 2013a), an empirical ratio of the plume height allocation 

(WRAP, 2004), adjusted with the stereo-height data from space-based Multi-angle Imaging Spectroradiometer (MISR) (Jian 150 

& Fu, 2014; Val Martin et al., 2012), etc. The inline plume rise algorithm couples the interaction of BB plumes dispersion 

with the basic weather dynamics to determine the effective plume rise height and subsequently the plume top and bottom. 

This inline PLMRIM is also able to resolve the fire on the sub-grid scale and feedback the plume dynamics information into 

the atmospheric dynamics (Gillani & Godowitch, 1999). However, the more complex the PLMRIM gets, the higher quality 

and quantity of input data are required to ensure its reliability.  155 
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In this work, combinations of injection height, initial vertical distribution, smoldering fraction, and offline and inline 

PLMRIM are tested to determine the more suitable settings for prediction of plume rise. Five case studies are set up for the 

evaluation of plume rise performance and their respective initial plume rise profiles are shown in Table 2. Nofire case 

represents the pollution condition when no BB emission is included, while the others allocate the BB emission from the 160 

FINN dataset. F800 and F2000 represent the offline PLMRIM where the injection height is fixed at generally accepted 800 

m and 2000 m (Wang et al., 2013a). This fixed height method controls the plume top to be consistent hence there is no 

hourly and daily variation of the plume top throughout the simulation period. FWrp uses the WRAP empirical equation to 

allocate the initial plume rise (WRAP, 2004). The plume top and bottom vary hourly with the buoyancy efficiency with 

higher plume height during the hotter noontime as illustrated in the initial plume profile in Figure 2 (FWrp). However, the 165 

empirical ratio adopted for each burning grid is the same every day. Idef is the inline plume-in-grid system that comes with 

the CMAQ model (Gillani and Godowitch, 1999). Fire emission is fed into the model at each grid point with plume top and 

bottom calculated through interaction of plume buoyancy efficiency and atmospheric stratification. The vertical distribution 

of CO plume on 12 Mar 2013 is shown in Figure 2 (Idef), but the daily weather condition is expected to vary the vertical 

distribution. IWrp has updated Idef with the WRAP empirical specification on burnt area size (also known as fire size). In 170 

this case, the plume can be distributed according to the diurnal buoyancy efficiency and near-surface smoldering fraction as 

specified by WRAP. With a more reasonable BB plume peak at the noontime in Figure 2 (IWrp), it is expected to improve 

the near-source concentration prediction of the model as seen from the initial plume profile. IWrp+EC is the same as IWrp 

but with the anthropogenic emission in PSEA replaced by the ECLIPSE dataset as specified in Section 3.2.1. The initial 

emission profiles (within plume top and bottom) of all cases are distributed evenly according to the height of each vertical 175 

layer. 
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Table 2: Case setup to evaluate PLMRIM performance 

Fire emission Plume rise 

module 

Initial plume rise allocation 

(Injection height) 

Time variant Anthropogenic Emission 

(d01, d02, d04) 

Nofire  - - MIX 

F800 No Plume top: 0.8 km 

Plume bottom: 0 km 

Smoldering fraction: no 

- MIX 

F2000 No Plume top: 2.0 km 

Plume bottom: 0 km 

Smoldering fraction: no 

- MIX 

FWrp No Plume top and bottom & Smoldering 

fraction: Fire heat flux and prescribed 

bins of acres burnt 

Daily fire size MIX 

IDef Inline 

 

Plume top and bottom: 

1.5 x effective plume rise height 

Smoldering fraction: yes 

Daily atmospheric 

stability 

MIX 

IWrp Inline  Plume top and bottom: 

1.5 x effective plume rise height 

Smoldering fraction: FWrp 

Daily fire size and 

daily atmospheric 

stability 

MIX 

IWrp+EC Inline Same as IWrp Same as IWrp Updated SEA region with 

ECLIPSE 

 

 180 

Figure 2: Initial CO concentration (ppm) profile at Mae Hong Son, Thailand on 13 Mar 2013 (UTC) for each case setup in Table 2 

with (a) F800, (b) F2000, (c) FWrp, (d) IDef, (e) IWrp/IWrp+EC.  

3 PLMRIM performance 

3.1 Ground-based measurement stations 

The model output is compared with the measurement data at a high-altitude background mountain station in western North 185 

Pacific, LABS (receptor; 2,862m AMSL, 23.47°N, 120.87°E) and Doi Ang Khang Meteorology Station (DAK) (source; 

1,536m AMSL, 19.93°N, 99.05°E) marked in Fig. 1b,c. The DAK station is an upwind near-source BB location in nPSEA, 

located in the Chiang Mai Provinces, Thailand, close to the border of Myanmar and Thailand. It is located away from the 

(a) F800 (b) F2000 (c) FWrp (d) IDef (e) IWrp/IWrp+EC
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cities and mainly received airmass from burning region on the upwind area (Hsiao et al., 2016; Pani et al., 2016) which made 

this site representative of the BB emissions from Myanmar, on the western side of Thailand (Khamkaew et al., 2016; Wang 190 

et al., 2015a). The hourly PM2.5 data from DAK station is collected during the 2013 7-SEAS spring campaign. Table 3 shows 

the performance of PLMRIM on daily PM10, daily PM2.5, hourly O3 and hourly CO at LABS and DAK according to the 

model benchmark (correlation coefficient, R; Mean Fractional Bias, MFB; Mean Fractional Error, MFE) suggested by the 

Taiwan EPA (Appendix C). MFB results show that the pollutants are generally over-estimated at these mountain stations. 

Unlike the case in the maritime continent that worked best with the F800 method (Wang et al., 2013a), both the fixed height 195 

methods (F2000, F800) do not apply well for the nPSEA region. Only slight improvement is observed for the offline module 

(FWrp) with injection height varies according to the fire size. The inline modules (IDef, IWrp) have obvious improvement 

at both LABS and DAK. For the ground stations in Taiwan and Thailand (black markers in Fig. 1b,c), all models have 

underestimated the pollutant concentrations while the IWrp has performed better than the default inline mechanism with 

higher correlation attained. The daily PM10 at the North Thailand PCD sources stations for IWrp achieved R=0.84, improved 200 

from R=0.77 of FWrp while daily PM2.5 at the Taiwan EPA ground stations for IWrp achieved R = 0.46, improved from 

R=0.26 of FWrp (see Table C1 for detail comparison). Adjustment of anthropogenic emission with ECLIPSE data 

(IWrp+EC) shows clear improvement of CO especially in the stations in Taiwan but not in Thailand. The comparably 

insignificant emission amount of anthropogenic emission compared to the BB emission at the near-source BB sites in 

Thailand is attributed to the minor pollutant changes during the BB period.  205 

 

Among all, the inline modules (IDef, IWrp, IWrp+EC) give the lowest bias and closest correlation with the measured 

ground station. This highlights the importance of atmospheric stability-based PLMRIM to capture the plume rise variation at 

the source site. The boundary layer evolution throughout the day is very much distinctive for mountain-valley compared to 

the flat surface where burning usually happens. As highlighted previously (Chuang et al., 2016a; Dong and Fu, 2015b), the 210 

geographical lifting mechanism at the nPSEA is the main factor the BB emission can be carried into the subtropical 

westerlies, and hence captured by LABS. Due to the similar performance among the offline and inline settings, the best 

performing setup of the offline module (FWrp) and inline module (IWRF+EC) are selected to simplify the subsequent 

discussion. 

 215 

Figure 3 shows the time series plots for the hourly wind field and PM2.5 at DAK source site and hourly wind field, PM10, CO, 

and O3 at LABS. The high pollution episode (marked in grey shades) fits well with the great contrast between the model fire 

and nofire scenarios and thus confirming that BB plumes are the main pollution source to the high pollution episodes. From 

the time series plot, the hourly PM2.5 at DAK (Fig. 3a) and hourly PM10 (Fig. 3b) at LABS are well captured by the inline 

module compared to the offline counterparts. In Fig. 3b, the wind direction shifted to strong south-westerlies in the 2nd half 220 

of March. It is followed by a rise in pollution level at LABS. The offline module (FWrp) has significantly overpredicted 

PM10 at some peaks, even up 200 µg m-3. Fair agreement is obtained for CO (Fig. 3c) and O3 (Fig. 3d) with slight 
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overestimation when concurrent high PM10 is modelled. Short-term peak values of 4-5 hours are observed in all models for 

PM10, CO, and O3. The systematic peaks for these pollutants are believed to be the uncertainties involving the FINN BB 

emission (Pimonsree et al., 2018). It is found that the performance of O3 is relatively unaffected by the PLMRIM choice.  225 

 

Table 3: Performance of modelled chemistry field with different settings of PLMRIM at mountain site in western North Pacific 

(LABS) and nPSEA (DAK). R: correlation coefficient; MFB: Mean Fractional Bias; MFE: Mean Fractional Error.  

Parameters Index Standard F2000 F800 FWrp IDef IWrp IWrp+EC 

LABS - Taiwan 

Daily PM10 

  

  

R x > 0.5 0.69 0.69 0.65 0.69 0.69 0.68 

MFB -0.35< x< 0.35 0.82 0.80 1.07 0.11 0.07 0.03 

MFE x< 0.55 0.82 0.80 1.07 0.33 0.32 0.25 

Hourly O3 

(>40 ppb) 

  

R x > 0.45 0.46 0.46 0.52 0.49 0.39 0.27 

MNB -0.15< x< 0.15 0.11 0.10 0.22 0.18 0.12 0.08 

MNE x< 0.35 0.20 0.20 0.26 0.24 0.20 0.17 

Hourly CO 

  

  

R x > 0.35 0.60 0.59 0.61 0.62 0.62 0.53 

MNB -0.5< x< 0.5 0.51 0.50 0.63 0.45 0.43 0.29 

MNE x< 0.5 0.55 0.55 0.66 0.50 0.49 0.38 

DAK- Thailand 

Daily PM2.5 

  

  

R x > 0.5 0.85 0.86 0.76 0.78 0.79 0.79 

MFB -0.35< x< 0.35 0.59 0.59 0.53 0.29 0.35 0.36 

MFE x< 0.55 0.63 0.62 0.61 0.32 0.38 0.38 
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 230 

Figure 3: Comparison of PLMRIM (observation (black), nofire (blue), FWrp (green), IDef (orange), IWrp+EC (red) of (a) hourly 

wind field and PM2.5 at DAK, and (b,c,d) hourly wind field and (b) PM10 (b), (c) CO, (d) O3 at LABS in Mar 2013; Grey shade 

highlights the high pollution hour at LABS (CO > 300 ppb, PM10 > 35 µg m-3). Wind field for observation (black) and simulation 

(red) are shown in vector form. 

 235 

(a) Hourly PM2.5 at DAK

(b) Hourly PM10 at LABS

(c) Hourly CO at LABS

(d) Hourly O3 at LABS
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3.2 Aerosol vertical distribution 

As illustrated in the shaded region in Fig. 3, the major period that affected LABS is during18–28 Mar 2013. The transport 

time is known to be around 2–3 days (Chuang et al., 2015), but a longer time of 4–5 days is taken to account for the BB 

emission generation, lifting, and dispersion at the source site. Hence, the vertical profile of the extinction coefficient from the 

ground lidar data on MPLNET v0 L1.5a and model output at DAK station during 13–28 Mar is compared in Fig. 4. In 240 

Fig.4a, the MPLNET extinction coefficient has shown that the aerosol layer presents around 3–4 km height and mainly 

confined below the boundary layer. Despite the lower concentration on the surface than the boundary layer, the concentrated 

amount of aerosol detected by MPLNET (14–15, 19–22, and 23 Mar) still agrees well with the DAK time-series data in Fig. 

3a.  

 245 

The 3-hourly average profile of the extinction coefficient from MPLNET (1 Mar–15 Apr 2014) and IWrp+EC and FWrp 

model output (13 – 28 Mar 2013) is illustrated in Fig. 4b-d. The incomplete MPLNET dataset of 2013 has prompted the use 

of the data from 2014 (Version 2 and Level 1.5) (Wang et al., 2015a) with a similar number of burning hotspots (sum of 

hotspot covered in model domain 2: 2013 = 1.1 x 105,  2014 = 1.2 x 105) and AOD (averaged from MERRA-2 AOD product 

in model domain 2: 2013 = 0.34, 2014 = 0.38) during the period of study. In Fig.4b, the MPLNET extinction coefficient 250 

increases with height up to around 2.3 km (775 hPa) and reduces around 3.2 km (650 hPa) before hitting another peak 

around 3.5–4 km. The 2-layer structure is also observed over nPSEA based on multiyear datasets from AERONET study 

(Feb – Apr, 2007 to 2011(Gautam et al., 2013) and MISR (Feb-Apr, 2001-2010;  Jian and Fu, 2014). The model output in 

Fig. 4c,d shows that the maximum layers above the presumed cap (3.2 km) occurred most prominently during the evening to 

midnight, and more often in offline than inline modules. The model shows that the offline module gives a time-invariant 255 

large value over the entire layers while the inline module is giving a greater approximation on the diurnal variation with the 

MPLNET result throughout the day. Therefore, during the daytime, the offline module has produced a higher plume height 

than the CMAQ inline module (Guevara et al., 2014). However, the extinction coefficient of inline output is around 3–4 

hours of time lag behind that observed by the MPLNET system.  

 260 

The extinction coefficient from MPLNET and model output data are only available for qualitative comparison due to their 

generically different derivations. The lidar system determines the extinction coefficient through the backscatter feedback 

from the release of the laser beam at 527 nm at every minute, while, the CMAQ model used the mass reconstruction method 

to sum up the extinction coefficient of each model aerosol species in each layer (Mebust et al., 2003). The empirical 

assumption for each species and the lower vertical model resolution is attributed to the uncertainties of the modelled 265 

extinction coefficient that is typically higher than the value retrieved by MPLNET. 
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Figure 4: Vertical extinction coefficient profiles between 13 to 28 Mar 2013 at DAK station from (a) MPLNET with boundary 

layer height (white); (b) MPLNET 3-hourly average extinction coefficient from 1 Mar – 15 Apr 2014 (Figure 6b directly extracted 270 
from (Wang et al., 2015a)); Modelled 3-hourly averaged output from 13 Mar – 28 Mar 2013 for (c) IWrp+EC, (d) FWrp. 

Figure 5 shows the CALIOP VFM at the midpoint of BB emission transport route to the receptor during one of the episodes 

on 19 – 20 Mar 2013. On 19 Mar morning when the sensor (swath: Fig. 5a) captured the smog layer at the height of 4 km 

above mean sea level (amsl) over the mountainous region (Fig. 5b,c). The aerosols detected are mainly made up of smoke 

and mixed polluted continental aerosols, which is the main burning emission source. It is known that the burning aerosols 275 

from the west part of nPSEA are orographically lifted by west-to-south-westerlies to a higher altitude depending on the 

terrain height (Cheng et al., 2013; Wang et al., 2015b). For the swath in Fig. 5d – f, the aerosol layers are detected on high 

levels up to 4 km during the midday. It is most certain to be transported over from the nPSEA since the aerosol layer is 

detected over the sea where burning does not occur. Secondly, the plume thickness is around 4 km despite the flat land 

surface, which is much higher than the source site which usually ranges between 0 – 3 km. The aerosol layers are believed to 280 

be lifted to a higher level and also mixed to the surface over the land mask in southeastern China. This region locates one of 

(b) 2014 MPLNET        (c) Model output: IWrp+EC (d) Model output: FWrp

(a) MPLNET extinction coefficient (UTC)
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the largest cities and main industrial bases in Asia, Pearl River Delta (PRD) which produces a large amount of anthropogenic 

emission. The potential vertical mixing is very likely to pick up the pollutants from the industrial base into the aerosol 

plume. Recently, it is proven through brute-force methods that the pollution from clusters arrived at the higher altitude in 

Taiwan during the winter season (Chuang et al., 2019). About 12 hours later when the swath (Fig. 5g – i) moves closer to 285 

Taiwan, the plumes move towards north of 16 ºN but still maintain at a similar altitude that can be detected by the LABS 

station at 2.4km amsl (Fig. 1). The plume is also found to continue gain in moisture content along the path.  
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Figure 5: CALIOP vertical feature type and aerosol subtype on continuous episode starting from (a – c) 19 Mar (06:02 LST), (d – 290 
f) 19 Mar (13:42 LST), (g – i) 20 Mar (02:07 LST). The corresponding position of the satellite swath is marked in points of red and 

grey marked in (a,d,f) and altitude below 0 km in (b,c,e,f,h,i). Feature Type: 0 = invalid, 1 = clear air, 2 = cloud, 3 = aerosol, 4 = 

strato, 5 = surface, 6 = subsurface, 7 = no signal; Subtype of Feature: ND = no data, 1 = marine, 2 = dust, 3 = polluted continental, 

4 = clean continental, 5 = polluted dust, 6 = smoke. 

19 Mar 2013 (06:02 LST)

(a) Swath 

(b) Feature Type

(c) Subtype of Feature

19 Mar 2013 (13:42 LST)

(d) Swath

(e) Feature Type

(f) Subtype of Feature

20 Mar 2013 (02:07 LST)

(g) Swath

(h) Feature Type

(i) Subtype of Feature
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A detailed comparison of vertical distribution for all sensitivity tests is given in Appendix D. but here we continue to discuss 295 

FWrp and IWrp+EC cases. In general, the offline FWrp produces a much higher concentration of high PM10 aerosol layers 

compared to the inline IWrp+EC. Figure 5 shows the model PM10 result for FWrp (range: 0-300 µg m-3) and IWrp+EC 

(range: 0-120 µg m-3) for the corresponding period of CALIPSO swath in Fig. 5. Comparison of Fig. 6a-d shows that the 

FWrp produces higher plumes and IWrp+EC produces lower plumes since the former produces the initial plume profile on 

19 Mar that is consistently high and less dependent on the atmospheric stability induced by mountain flow (Figure D1). 300 

Further from the source site (Fig. 6e,f), both runs predict a much lower aerosol layer around 2 km, compared to the 4 km 

height captured by the CALIOP sensor. The under-representation of both systems along the transport path above sea might 

be due to the moisture detrainment and entrainment process that is not accounted for in the current model (Paugam et al., 

2016; Sofiev et al., 2012).  

 305 

With a concentration difference of more than 2 times between FWrp (up to 300 µg m-3)  and IWrp+EC (up to 120 µg m-3) , 

a more accurate value is captured at LABS by the IWrp+EC as shown in Table 3. Regardless of the PLMRIM used, the top 

height of the plume is confined by an overhead upper-layer wind system. The system has created a strong shear and 

suppressed the lifting pertaining to the burning convective heat. This explains the invariant of plume height when different 

settings are used.  310 

 

Figure 6: Comparison of model PM10 cross-sectional profile corresponding to CALIPSO period and swath in Figure 4. The range 

of the left panel is 0–120 µg m-3, right panel is 0–300 µg m-3. 

The cross-sectional profile in Fig. 6 shows that the amount of emission produced by the offline method is substantially larger 

than the amount produced by the inline method. Therefore, the total columnar AOD data provided by 1º x 1º MODIS Terra 315 

(a) IWrp+EC - 19 Mar (06:00 LST) (b) FWrp - 19 Mar (06:00 LST)

(c) IWrp+EC - 19 Mar (14:00 LST) (d) FWrp - 19 Mar (14:00 LST) 

(e) IWrp+EC - 20 Mar (02:00 LST) (f) FWrp - 20 Mar (02:00 LST)
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Level 3 AOD product (MOD08_D3, Platnick et al, 2015) during the same period (20 Mar 10:30 LST) is used for the 

verification of the aerosol concentration. Figure 7 shows that the total column AOD produced by the inline module gives a 

closer approximation to the MODIS. FWrp greatly overestimates the aerosol produced by the BB emissions, while the inline 

module gives a closer agreement on northern Thailand and southern Vietnam.  

 320 

Figure 7: Comparison of daily total column AOD on 20 Mar (10:30 LST) of model output (a) IWrp+EC, (b) FWrp, (c) Nofire with 

(d) MODIS data from Figure 5. Vector profiles given in (a-c) are the surface wind profile. 

3.3 Reliability of inline PLMRIM 

The variation of model performance has intrigued the compatibility of emission inventory with the PLMRIM performance. 

The FINN dataset provides high-resolution data for each fire (1 km2) and would be more representative in the inline 325 

calculation that is proceeded with the plume-in-grid concept. Therefore, if the offline method is adopted (FWrp), the high-

resolution emission dataset FINN in the nPSEA region tends to over-predict by 4-fold (Fig. 3a). Previous literature has to 

make an adjustment to the fire inventory to bring down the FINN emission amount that was overestimated by up to 2-3 times 

of PM2.5 and PM10 at the source region (Pimonsree et al., 2018), and FLAMBE overestimates up to 3 times for CO and PM10 

at the LABS site (Chuang et al., 2015; Fu et al., 2012). In this paper, the model discovers that the direct application of the 330 

FINN dataset is able to work well with the inline module (IWrp+EC). BB emission is mainly caused by small fires and dry 

conditions over the period in the region (Giglio et al., 2013; Reid et al., 2013), this also explains why the inline module 

worked well to represent the BB condition.  
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 335 

Figure 8: Spatial distribution of PM10 concentration on 19 Mar 17:00 LST over burning regions of nPSEA for 4th domain (d04) 

The inaccuracy of the offline module is likely to be caused by the role of the complex terrain in uplifting the smoke plume 

and the nature of the fuel loadings. The connecting slopes (0.2–1.8 km as seen in Fig. 1c) causes the complication to 

boundary layer physics that governs the dynamics to transport the plumes formed in the valley pockets. Due to the unique 

topographic structure in nPSEA, the lifting and breaking away of burning emission plumes from burning area occurs during 340 

the evening-to-night period. Therefore, mountain meteorology played an important role in the distribution of higher-level 

plumes. Moreover, the ability of PLMRIM to capture the boundary layer physics becomes essential in the mountainous 

region. Through the inline module with the WRAP initial plume profile (IWrp+EC), the natural buoyancy of fire together 

with the convective interaction of the atmosphere can correctly distribute the BB emission. The spatial distribution of PM10 

over burning regions in nPSEA is shown, with comparison made for scenarios nofire (Fig. 8a), offline (Fig. 8b) and inline 345 

(Fig. 8c). Comparison of the figures shows that each sub-grid scale fire hotspots more realistically represents the actual high 

concentration of emission emitted at the source (Fig. 8c) compared to the grid-following averaged out effect in the offline 

method (Fig. 8b). Nevertheless, the current setting does not include the two-way aerosol-radiation and aerosol-radiation-

cloud feedback. This will be further studied in the future work looking at its importance in the cloud-laden SEA region (Tsay 

et al., 2016), as seen in the missing data due to the cloud cover in Fig. 6d. 350 

 

4 Transport of biomass burning aerosol to Taiwan 

The below discussion is performed using the model output of IWrp+EC and focuses on the high pollution episodes 

observed at LABS during 13–28 Mar 2013 as seen in the grey shaded area of Figure 3. In the source region of nPSEA, the 

complex land terrain has played a substantial role in the BB plume lifting. Figure 9 shows the evolution of the PM10 355 

concentration on 13 Mar 2013 at DAK but over the nPSEA through the cross-sectional profile (Fig. 1c). During the day 

(a) Nofire (b) FWrp (c) IWrp+EC
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when the fires are active, BB emission is released from the surface (Fig. 9a, b). Along with the rising of planetary boundary 

layer height (PBLH), the BB aerosol mixes into the entire boundary layer. The residue layer starts to form during the 

transitional period between the day and night around 17:00 LST (Fig. 9c) when the ground surface cools down. When the 

atmosphere becomes stable into the night, the aerosol layer remains as the residue layer and does not move down with the 360 

boundary layer (Fig. 9d). The plume starts to be advected by the shear of the upper layer flow at night on the downwind 

leeside of the hills. It is because the boundary layer height tends to rise higher due to turbulence. The descent of the 

boundary layer also confines the aerosol and causes a high concentration near the surface. The detachment of the aerosol 

layer therefore explains the two-layer plume feature from evening into the night in Fig. 4b,c. The dispersion of emission 

from the pockets is subjected to at least three systems, (i) strong westerlies from Myanmar flowing over the top of valley 365 

pockets that confined the emission (terrain structure shown in grey in Fig. 9), (ii) diurnal mountain-valley breeze might trap 

or disperse the emission, (iii) local heating caused by the solar cycle affects the plume rise and disperse the emission. 

Therefore, the amount of burning emission lifted is greatly coherent with the populated hills along the transport path. 

 

Figure 9: The modelled vertical cross section profile (BB’ in Figure 1c) up to 5 km over nPSEA on 13 Mar: (contour) PM10 370 
concentration (IWrp+EC, µg m-3), (vector) horizontal wind profile (ms-1) in x-direction and vertical wind profile in y-direction (cm 

s-1), (dotted lines) boundary layer height in meter, (shaded) terrain.  

Comparing the model output data of the inline (IWrp+EC) and nofire, Figure 3 shows that BB from nPSEA contributes 

68±18% to PM10, 66±18% to PM2.5, 41±13% to O3 and 58±13% to CO during the intense BB period (18 – 27 Mar) to LABS. 

While BB contributes 43±31% to PM10, 41±32% to PM2.5, 23±19% to O3, and 39.1±23.0% to CO  at LABS for the entire 375 

month of Mar 2013. The transport pathway of BB from nPSEA to LABS coincides with the anthropogenic emissions from 

the nPSEA as well as the southeast China, BB aerosols from such emission region are also captured in the model. Therefore, 

the actual amount might indicate a slightly lower contribution by BB aerosol than the derived contribution. There are several 

mechanisms identified in Mar 2013 to bring BB smoke to Taiwan.  

(a) 13:00 LST (b) 15:00 LST

(c) 17:00 LST (d) 18:00 LST
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4.1 Westerlies to carry BB emission to LABS  380 

In this case, the BB aerosol lifted is further carried by strong westerlies on the upper layer, around height between 2–4 km 

towards LABS. This usually occurred during the night when the atmospheric boundary layer is low and stable as shown in 

Fig. 10. This is the commonly known mechanism that carries the BB plumes to higher ground in Taiwan. This condition 

occurred on 19–20, 24–25, 27–28 Mar 2013. This is the commonly known scenario that is well studied due to the availability 

of measurement collected at LABS.  385 

 

Figure 10: Vertical cross-sectional AA’ (Figure 1b) profile for PM10 (contour), wind at x-z direction (vector), PBLH (dotted lines) 

and terrain height (grey shade) on 2013083 12:00 UTC (24 Mar 20:00 LST) for (a) with fire, (b) no fire.  

4.2 Mixing of BB emission with local pollution on surface 

The land surface is heated up and the boundary layer during the day grows as high as 1.5 – 2 km on western Taiwan, around 390 

1 km on the windward of the central mountain range, and up to 4 km amsl at LABS. When the BB plumes overpass are as 

low as the BLH, then the BB aerosol is brought into the boundary layer and mixed to the ground as shown in Fig. 11. The 

interaction of BB with local pollutants depends on the loading of local pollutants present. The latter is subjected to the local 

weather system and the occasional Asian continental cold surge that might clean the accumulated pollutants. Such cases 

usually occur during the morning to noontime when the land surface heats up and PBLH develops. This condition occurred 395 

on 18, 19, 20, 21, 28 Mar 2013. This is the main mechanism that affects the western Taiwan. It was pointed out that cold 

surge might be responsible for the downdraft of the BB smoke plumes to the surface (e.g. Lin et al., 2017).  
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Figure 11: Similar to Figure 10 but on 2013078 00:00, 02:00, 04:00, 06:00 UTC (24 Mar 08:00, 10:00, 12:00, 14:00 LST) for (a) 400 
with fire, (b) no fire. 

4.3 Mixing of BB emission with local pollution above surface 

Along with the sea-land heat difference, the sea breeze and mountain breeze are formed and enhance the uphill movement of 

local pollution in western Taiwan. In such a case, the local pollution is brought up to a high elevation to interact with the BB 

smoke plumes as shown in Fig. 12. It also occurred that the local pollutants brought uphill detaches from the planetary 405 

boundary layer when the surface cools down quickly. This residue layer of pollutants is then mixed into the BB layers and 

carried towards the east. Such cases usually occur during midday when the local pollution plumes have moved up to the hill. 

This condition occurred on 17, 23, 25 Mar. The detection of BB intrusion into surface sites in southwestern Taiwan is not a 

rare occasion (Huang et al., 2013; Tsai et al., 2012).  A larger amount of fine nanoparticles from local sources is measured at 

LABS especially during the morning even not during the spring season (Chen et al., 2013). Therefore, it is possible that 410 

mixing does occur when the local pollutants are transported up the hill through the valley breeze.  

 

(a) With fire (b) No fire
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Figure 12: Similar to Figure 10 but on 2013076 03:00, 05:00, 08:00, 10:00 UTC (22 Mar 11:00, 13:00, 16:00, 18:00 LST) for (a) 

with fire, (b) no fire. 415 

Among the three mechanisms, the BB aerosols have the most direct influence on the surface site in western Taiwan, which is 

coherent to the reduction of surface O3, NOx, and SO4
2- aerosols in 2006 (Dong et al., 2018). However, all these three 

mechanisms are prone to alter the radiative forcing over western Taiwan. The future incorporations of the aerosol radiative 

forcing effect through one-way and two-way meteorology-chemistry process of moisture detrainment and entrainment are 

necessary to understand the role of BB aerosol on the weather extremes in downwind regions. The cloud-aerosol interaction 420 

is particularly crucial to the study of the impact of BB aerosols on cloud-laden regions between nPSEA and Taiwan (Hsu et 

al., 2003; Tsay et al., 2016). The allocation fraction will need to improve looking at the importance of small fire smoldering 

in SEA (Akingunola et al., 2018; Zhou et al., 2018). 

 

(a) With fire (b) No fire
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5 Conclusion 425 

In this study, several factors involved in the modelling of BB smoke plumes are tested in the WRF-CMAQ model, namely 

the injection height, initial vertical distribution profile of BB emission, inline PLMRIM, and amount of anthropogenic 

emission. The conventional method used for the study region adopted the fixed height allocation which produces an 

excessive amount of emission over the entire transport route. The initial vertical allocation profile according to the WRAP 

empirical coefficient (IWrp) improves the surface concentration of the BB emission by the inclusion of the smoldering 430 

fraction compared to the default inline PLMRIM (IDef). While replacing the emission in SEA countries from MIX (IWrp) 

to ECLIPSE (IWrp+EC) also improves the pollution concentration simulation at the downwind LABS, especially CO which 

is the important tracer of anthropogenic emission.  

 

The model comparison shows that regardless of the injection height, the main deficiency of the fixed height offline algorithm 435 

originates from its invariant vertical-layer allocation of BB concentration throughout the day. In the complex terrain over the 

nPSEA region which is continuous and varies between 0.2 km to 1.8 km, mountain meteorology played an important role in 

the distribution of higher-level plumes. The two-layer structure of the BB plumes observed in the MPLNET extinction 

coefficient profile at night is well captured by the inline PLMRIM (IWrp+EC) while the offline method (FWrp) gives a 

time-invariant large value over the entire layers. This highlights that the inline PLMRIM (IWrp+EC) is able to incorporate 440 

the diurnal boundary layer physics of the mountain to accurately represent the vertical distribution of the BB concentration in 

the source and downwind region. It is then clear that the amount of emission produced by the inline reasonably captures the 

columnar AOD distribution over the transport route between nPSEA and downwind Taiwan when compared to the MODIS 

columnar product. It is discovered that the inline module with the initial distribution profile of WRAP (IWrp+EC) is able to 

and performs well both at the source and receptor sites compared to the offline module.  445 

 

The model output shows that the BB plumes near nPSEA are emitted during the day within the BLH. Due to strong 

mountain-valley wind, the smoke plume layers tend to detach from the BLH as residue layers when the surface cools down 

in the evening-to-night period. This is the layer of plumes that entered the free troposphere at approximately 1-3km height 

and further transported over to western north Pacific and Taiwan. The plume layers clearly affect the Taiwan region via three 450 

conditions: (a) overpass western Taiwan and enter mountain area (LABS), (b) mix down to western Taiwan, (c) transport of 

local pollutants up and mix with BB plume on LABS. The second condition involves the prevailing high-pressure system 

that is able to impact the most population in Taiwan and would be an interesting case to explore.  

 

However, care should be taken to select the BB emission inventory input when switching from the offline module to the 455 

inline module. The sub-grid scale allocation of the BB emission requires higher resolution of BB emission inventory such as 

FINN to reproduce the individual fires with distinct and realistic peaks. The work highlights the importance of atmospheric 
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stability-based PLMRIM and the accurate application of emission inventories to capture the plume rise variation at the 

source site with complex terrain. The correct representation at the nPSEA source site substantially affects the downwind BB 

concentration in mountain (LABS) and surface sites in Taiwan. It is also observed that the improved setting is able to 460 

represent the source site’s vertical profile well, however, the height of the plume is reduced following the transport and 

evolution of the plume approaching Taiwan. This might be caused by the missing algorithm of the indirect and direct effect 

between aerosols and the high cloud cover region along the transport path. It leads to future exploration and incorporation of 

the effect of cloud-aerosol interaction over the cloud-laden region. 

  465 
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Appendix A. Model verification for modelled weather field 

In the following formulas, Mi, Oi, Ō represent simulated value of record i, observed value of record i, mean of observed 

values for 1 to N. N are total number of records. 

Mean Bias (MB): MB = 
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)𝑁

𝑖=1   

Mean Absolute Error (MAE): MAE = 
1

𝑁
∑ |𝑀𝑖 − 𝑂𝑖|𝑁

𝑖=1   470 

Root Mean Square Error (RMSE): RMSE =[ 
1

𝑁
∑ (𝑀𝑖 − 𝑂𝑖)𝑁

𝑖=1
2

]

1
2
 

Wind Normalized Mean Bias (WNMB) : WNMB = 
1

𝑁×360°
∑ (𝑀𝑖 − 𝑂𝑖)𝑁

𝑖=1  × 100% 

Wind Normalized Mean Error (WNME): WNME = 
1

𝑁×360°
∑ |𝑀𝑖 − 𝑂𝑖|𝑁

𝑖=1  × 100% 

The boundary condition data in WRF model uses the reanalysis weather data. These data are assimilated with measurement 

data, they are available in coarse resolution (1° x 1°). The work has hence included the observation nudging settings to 475 

improve its prediction of local area. The data used for nudging are given in Section 2. The assimilation with the default 

setting does not improve the prediction hourly T2 and WS, hence the subsequent effort is to adjust the area of influence of 

each the measuring stations. The radii of influence (RIN) for both d03 and d04 are updated to 100 km based on the average 

distance between the observation stations (d03: 125 km, d04: 153 km) and minimum distance between 2 stations (d03: 64 

km, d04: 36 km). Although the wind direction is greatly improved with the modification of RIN, the positive bias of T2 and 480 

negative bias of WS is still apparent, especially for the LABS station. Given that the 3rd domain is of 5 km x 5 km resolution, 

the height of Mt. Lulin might be averaged out by the lower terrain surrounding it and the model height of Mt. Lulin is lower 

(2216 m, layer = 1) than its original height (2862 m). Comparison has found that model layer 4 from surface is most 

representative of the height of Mt Lulin (2492 m; 757 hPa). Hence with the extraction of new location of Mt Lulin, the 

prediction of T2 and WS are improved significantly as tabulated in $Table_VERmet. The wind profile over LABS, one of 485 

the decisive weather factors of transport, has complied well with the observation data as seen in Figure 2. The passing rate of 

surface cwb stations for hourly T2, WS and WD are also well above the model benchmark (60%).  

Table A1: The performance of each stations for weather parameters (T2, WS, WD) in March 2013 for Thailand (TH) 

stations, Taiwan (TW) stations, and Lulin (LABS). *Distance given is the radius of influence in observation nudging. 

#Station output is extracted from the corresponding model layer of the station height in the model.  490 

Parameter Index Standard no fdda fdda; 240 km* fdda; 100 km*# 

TH stations     

T2 MB -1.5< x< 1.5 -0.3 -0.3 -0.3 
 MAE x< 3 2.2 2.2 2.2 

WS MB -1.5< x< 1.5 1.2 1.2 1.2 
 RMSE x< 3 1.7 1.8 1.8 

WD WNMB -10< x < 10 2.1 -4.0 -4.1 
 WNME x< 30 29.5 23.4 23.3 

TW stations     

T2 MB -1.5< x< 1.5 0.5 0.2 0.2 
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 MAE x< 3 2.1 2.0 2.0 

WS MB -1.5< x< 1.5 0.5 0.7 0.7 

 RMSE x< 3 1.9 1.9 1.9 

WD WNMB -10< x < 10 -4.5 -9.9 -10.2 

 WNME x< 30 26.6 20.8 20.9 

LABS     

T2 MB -1.5< x< 1.5 1.6 2.3 0.2 

 MAE x< 3 2.6 2.9 1.5 

WS MB -1.5< x< 1.5 -2.6 -1.9 0.9 

 RMSE x< 3 3.5 3.0 2.3 

WD WNMB -10< x < 10 0.3 -4.0 3.4 

 WNME x< 30 12.6 12.7 8.9 

Appendix B. Comparison of ECLIPSE and MIX anthropogenic emission 

The anthropogenic dataset, ECLIPSE and MIX for year 2010 is compared in Figure B1 for peninsular SEA and in Figure B2 

for the entire Asia. Figure B1 shows that ECLIPSE generated lower amount of CO and VOC and higher amount of 

particulate matters and NOx over peninsular SEA compared to the MIX dataset. The ECLIPSE data give a higher total NH3, 

BC, PM2.5, NOx, PM10 by 192%, 51%, 38%, 29%, 24% respectively, while lower total VOC, CO, OC, SO2 by 40%, 23%, 495 

22%, 20% respectively. Largest biases are observed in developing SEA countries as seen in Figure B2, such as Laos, Burma, 

Philippines and Timor-Leste where local data are not easily available. However, the emissions for China and Taiwan are 

kept unchanged due to the high confidence and quality of respective national emission inventories (Li et al., 2018).  

 

Figure B1: Comparison of total mass of emitted air pollutants (BC, CO, NH3, NOx, OC, PM10, PM2.5, SO2, VOC) from 500 

anthropogenic emission inventories over peninsular SEA (including Thailand, Vietname, Cambodia, Burma and Laos) in year 

2010: ECLIPSE (ECP; box with diagonal lines), MICS-ASIA (MIX; box with horizontal lines), and difference fraction between 

ECP and MIX ((ECP-MIX)/MIX); red line). 
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Figure B2: Comparison of 2010 ECLIPSE and MIX emission in Southeast Asia and Asia countries that are covered within d02, 505 

including Taiwan and China.  

Appendix C. Model verification for modelled air quality  

In the following formulas, Mi, Oi, Ō represent simulated value of record i, observed value of record i, mean of observed 

values for 1 to N. N are total number of records. 

Correlation Coefficient (R): R = 
1

𝑁−1
∑ [

(𝑀𝑖− 𝑀)(𝑂𝑖−𝑂)

𝑆𝑡𝑑𝑒𝑣𝑀𝑆𝑡𝑑𝑒𝑣𝑜
]𝑁

𝑖=1  510 

Mean Fractional Bias (MFB): MFB = 
1

𝑁
∑

𝑀𝑖−𝑂𝑖

(𝑀𝑖+𝑂𝑖)/2

𝑁
𝑖=1   

 Mean Fractional Error (MFE) : MFE = 
1

𝑁
∑

|𝑀𝑖−𝑂𝑖|

(𝑀𝑖+𝑂𝑖)/2

𝑁
𝑖=1   

Table C1: Performance of modelled chemistry field with different setting of plume rise model at other EPA stations in Taiwan and 

PCD stations in NT 

Parameter Index Standard F2000 F800 FWrp IDef IWrp IWrp+Ec 

TW stations (EPA)        

Daily PM10 

  

  

R x > 0.5 0.22 0.22 0.17 0.34 0.34 0.30 

MFB -0.35< x< 0.35 -0.35 -0.36 -0.26 -0.70 -0.71 -0.79 

MFE x< 0.55 0.60 0.60 0.58 0.74 0.75 0.81 

Daily PM2.5  R x > 0.5 0.30 0.30 0.26 0.48 0.49 0.46 

MFB -0.35< x< 0.35 -0.11 -0.12 -0.02 -0.57 -0.58 -0.61 

MFE x< 0.55 0.44 0.43 0.44 0.61 0.61 0.64 

Hourly O3 

(>40 ppb) 

R x > 0.45 0.58 0.58 0.57 0.55 0.55 0.61 

MNB -0.15< x< 0.15 0.09 0.08 0.09 0.10 0.09 -0.01 

MNE x< 0.35 0.22 0.22 0.22 0.22 0.22 0.21 

Hourly CO R x > 0.35 0.24 0.24 0.24 0.24 0.24 0.29 

MNB -0.5< x< 0.5 0.14 0.14 0.18 0.11 0.11 0.09 

MNE x< 0.5 0.55 0.55 0.56 0.56 0.56 0.56 

NT Stations (PCD)        

Daily PM10 

  

  

R x > 0.5 0.76 0.75 0.77 0.83 0.84 0.84 

MFB -0.35< x< 0.35 -0.40 -0.45 -0.30 -0.91 -0.86 -0.85 

MFE x< 0.55 0.60 0.64 0.50 0.91 0.87 0.86 

-1.00

0.00

1.00

2.00

3.00

4.00

E
m

is
s
io

n
 d

if
fe

re
n
c
e

(E
C

L
IP

S
E

 -
M

IC
S

) 
/ 

M
IC

S

Asia and Southeast Asia countries

PM10 PM25 CO BC OC NOx SO2 VOC

https://doi.org/10.5194/acp-2020-1283
Preprint. Discussion started: 18 February 2021
c© Author(s) 2021. CC BY 4.0 License.



28 

 

Hourly O3 

(>40 ppb) 

  

R x > 0.45 0.44 0.44 0.45 0.47 0.49 0.49 

MNB -0.15< x< 0.15 -0.04 -0.07 -0.01 0.27 0.22 0.23 

MNE x< 0.35 0.25 0.25 0.24 0.39 0.37 0.37 

Hourly CO R x > 0.35 0.41 0.42 0.37 0.41 0.45 0.45 

MNB -0.5< x< 0.5 -0.50 -0.51 -0.48 -0.25 -0.21 -0.21 

MNE x< 0.5 0.74 0.74 0.74 0.74 0.74 0.74 

Appendix D. Detailed comparison of vertical distribution  515 

For offline methods, higher plume rise height and concentration vary positively with the initial allocated height (Table 2), 

with increasing order of F800, F2000 to FWrp. Inline method is generally lower in amount and the near surface emission has 

increased with IWrp compared to IDef (Figure S2). 

(a) F2000     (b) F800 

 520 

(c) IDef      (d) FWrp 

 

(e) IWrp      (f) IWrp + EC 

 

(g) nofire 525 

 

Figure D1: Comparison of vertical cross-sectional area on 19 Mar (06:00 LST) modelled by each plume rise setting with the same 

contour scale range (0 – 120 ug.m-3) 
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 530 

(a) IWrp+EC at 20 Mar 17:00 LST (b) FWrp at 20 Mar 17:00 LST 

 

(c) IWrp+EC at 20 Mar 18:00 LST (d) FWrp at 20 Mar 18:00 LST 

 

Figure D2: Vertical PM10 BB’ cross section (Figure 1c) up to 5 km at NT (d04) on 20 Mar (a) IWrp+EC at 17:00 LST, (b) FWrp at 535 

17:00 LST, (c) IWrp+EC at 18:00 LST, (d) Fwrp at 18:00 LST. 
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